
1/12/2021 How to Organize Your React + Redux Codebase | Pluralsight

https://www.pluralsight.com/guides/how-to-organize-your-react-+-redux-codebase 1/8

Get started Log in

×

How to Organize Your React + Redux
Codebase
Manujith Pallewatte

Mar 3, 2020 • 14 Min read • 21,814 Views

Mar 3, 2020 • 14 Min read • 21,814 Views

Manujith Pallewatte

Web Development React

The Application Feature Split

121

Introduction
The Flat Structure
The View-State Split
The Application Feature Split
Conclusion
Top

Introduction

React is one of the most unopinionated frontend frameworks in

existence. From the selection of states, androuting to managing your

code structure, React does not inherently provide any guidelines.

Comparatively, Angular provides a much better insight into where and

how the building blocks should be placed in the code. This puts React

developers in a difficult position at the start of a project. Regardless of

our experience, we all find it extremely difficult to formulate the

perfect codebase structure at the beginning of a new project.

In general, React project structures are often iteratively evolved

alongside the project's scope and complexity. When new libraries are

added, such as Redux and React Router, the initial structure needs to

be refactored to accommodate the added complexity. With pressure

on deadlines for the project's completion, the refactoring gets stuck in

backlog until the project is completely unmaintainable.

In this guide, we will explore several directory structures that are used

in production-grade applications and analyze the pros and cons of

each. It is important to keep in mind that no single structure

universally fits every project. Depending on the project's size, scope,

complexity, and future aspects, the most suitable structure varies.

Thus, this guide can help as a starting point in choosing the correct

initial structure so that future refactoring is minimal.

Let's use a model project to evaluate our different codebase

organizations. We will be looking at a codebase of a blog frontend,

121

We use cookies to make interactions with our websites and services easy and
meaningful. For more information about the cookies we use or to find out how you
can disable cookies, click here.

Disable cookies Accept cookies and close this message

https://www.pluralsight.com/
https://www.pluralsight.com/privacy

1/12/2021 How to Organize Your React + Redux Codebase | Pluralsight

https://www.pluralsight.com/guides/how-to-organize-your-react-+-redux-codebase 2/8

The Application Feature Split

121

Introduction
The Flat Structure
The View-State Split
The Application Feature Split
Conclusion
Top

where we have the following features:

1. Articles (or blog posts), categories, and users

2. A home page that shows a list of categories and a list of articles

3. A category page that shows category-specific information and

articles

While the feature set looks simple at a glance, the actual codebase

will span across multiple files and directories. We also assume that we

use Redux to manage our application state.

The Flat Structure

First, we'll explore the most common and easiest structure in use. I call

it the flat structure since it has minimal directory nesting and is quite

straightforward. It follows the principle of separating the logic and

view in the root level and then adding Redux related directories to the

mix.

Directory functions, in brief, include the following:

components - Contains all 'dumb' or presentational components,
consisting only of HTML and styling.
containers - Contains all corresponding components with logic in
them. Each container will have one or more component depending
on the view represented by the container. For example,
HomePageContainer would have ArticleListComponent as well as
CategoryComponent .
actions - All Redux actions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

└── src

 ├── actions

 │ ├── articleActions.js

 │ ├── categoryActions.js

 │ └── userActions.js

 ├── api

 │ ├── apiHandler.js

 │ ├── articleApi.js

 │ ├── categoryApi.js

 │ └── userApi.js

 ├── components

 │ ├── ArticleComponent.jsx

 │ ├── ArticleListComponent.jsx

 │ ├── CategoryComponent.jsx

 │ ├── CategoryPageComponent.jsx

 │ └── HomePageComponent.jsx

 ├── containers

 │ ├── ArticleContainer.js

 │ ├── CategoryPageContainer.js

 │ └── HomePageContainer.js

 ├── index.js

 ├── reducers

 │ ├── articleReducer.js

 │ ├── categoryReducer.js

 │ └── userReducer.js

 ├── routes.js

 ├── store.js

 └── utils

 └── authUtils.js

121

We use cookies to make interactions with our websites and services easy and
meaningful. For more information about the cookies we use or to find out how you
can disable cookies, click here.

Disable cookies Accept cookies and close this message

https://www.pluralsight.com/privacy

1/12/2021 How to Organize Your React + Redux Codebase | Pluralsight

https://www.pluralsight.com/guides/how-to-organize-your-react-+-redux-codebase 3/8

The Application Feature Split

121

Introduction
The Flat Structure
The View-State Split
The Application Feature Split
Conclusion
Top

reducers - All Redux reducers
API - API connectivity related code. Handler usually involves setting
up an API connector centrally with authentication and other
necessary headers.
Utils - Other logical codes that are not React specific. For example,
authUtils would have functions to process the JWT token from
the API to determine the user scopes.

store.js is simply the Redux store and the routes.js aggregates all

routes together for easy access.

Note: Defining all routes in a single file has been a deprecated as a

practice, according to new React Router docs. It promoted

segregating routes into components for better readability. Check

React Router Docs for a better understanding.

With the above understanding, let's analyze why and why not to use a

flat structure.

Pros

1. Easier readability with flat structures. You could easily do a
filename search.

2. Developer onboarding is easy.

Cons

1. Need to edit multiple files/directories to add a new function. Let's
say we need to have a comment feature. We need to add
commentAction to actions, commentReducer to reducers,
CommentComponent to component, and CommentContainer to
containers.

2. Redux state is everywhere. The actions, reducers, and sometimes
types are in separate directories.

3. When the codebase grows, a lack of inner structure makes it hard
to maintain. For example, at a glance, we could not see the
components that are used by HomePageContainer .

4. Container-Component split doesn't make sense in certain instances,
such as the pages.

With the above issues, we could do a slight improvement by

introducing the pages directory as a way of providing some

organization.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

└── src

 ├── actions

 │ ├── articleActions.js

 │ ├── categoryActions.js

 │ └── userActions.js

 ├── api

 │ ├── apiHandler.js

 │ ├── articleApi.js

 │ ├── categoryApi.js

 │ └── userApi.js

 ├── components

 │ └── ArticleComponent.jsx

 ├── containers

 │ └── ArticleContainer.js

 ├── index.js

 ├── pages

 │ ├── CategoryPage

 │ │ ├── CategoryPageContainer.js

 │ │ └── components

121

We use cookies to make interactions with our websites and services easy and
meaningful. For more information about the cookies we use or to find out how you
can disable cookies, click here.

Disable cookies Accept cookies and close this message

https://reacttraining.com/react-router/web/guides/quick-start
https://www.pluralsight.com/privacy

1/12/2021 How to Organize Your React + Redux Codebase | Pluralsight

https://www.pluralsight.com/guides/how-to-organize-your-react-+-redux-codebase 4/8

The Application Feature Split

121

Introduction
The Flat Structure
The View-State Split
The Application Feature Split
Conclusion
Top

Now with the above improvement, the directory structure provides

some context into the actual positioning of the various components in

the app. At a glance, it is clear that HomePageComponent ,

ArticleListComponent , and CategoryComponent are part of the

HomePage . As an important side effect, now the things that remain on

the components and containers directory at the root level are the

shared components that do not directly belong to any one page. So,

we could go one step further and group them into a common directory.

This looks much better. If your app does not has a huge application

state, and is rather view- and logic-heavy, the above structure should

work. It provides significant clarity and maintainability. But if your

Redux code is also growing with the rest of the features, you will soon

find that you need a better organization for the state as well.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

 │ │ └── CategoryPageComponent.jsx

 │ └── HomePage

 │ ├── components

 │ │ ├── ArticleListComponent.jsx

 │ │ ├── CategoryComponent.jsx

 │ │ └── HomePageComponent.jsx

 │ └── HomePageContainer.js

 ├── reducers

 │ ├── articleReducer.js

 │ ├── categoryReducer.js

 │ └── userReducer.js

 ├── routes.js

 ├── store.js

 └── utils

 └── authUtils.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

└── src

 ├── actions

 │ └── ...

 ├── api

 │ └── ...

 ├── common

 │ ├── components

 │ │ └── ArticleComponent.jsx

 │ └── containers

 │ └── ArticleContainer.js

 ├── index.js

 ├── pages

 │ └── ...

 ├── reducers

 │ └── ...

 ├── routes.js

 ├── store.js

 └── utils

 └── ...

bash

The View-State Split

The view-state split improves upon the previous structure to simply

give a better organization to the state. It separates the view and logic-

heavy components from the state component, but introduces

additional structuring within the state.

121

We use cookies to make interactions with our websites and services easy and
meaningful. For more information about the cookies we use or to find out how you
can disable cookies, click here.

Disable cookies Accept cookies and close this message

https://www.pluralsight.com/privacy

1/12/2021 How to Organize Your React + Redux Codebase | Pluralsight

https://www.pluralsight.com/guides/how-to-organize-your-react-+-redux-codebase 5/8

The Application Feature Split

121

Introduction
The Flat Structure
The View-State Split
The Application Feature Split
Conclusion
Top

Changes in the above structure are simple. The state is now nested

with one more level where actions and reducers of a particular

application feature are grouped. With this, finding where the changes

need to be done for a particular feature is visible at once. For

example, if your API decides to send articles tags and now you want

to show them in your Articles components, you first edit the api ,

then the state , and finally update the ArticleComponent .

Pros

1. Adding new application features and maintaining current features is
easy.

2. The state is well organized, no confusion on the placement.
3. All Redux codes are concentrated in one location, so refactoring is

easy. For example, if you decide to use Redux Toolkit after a while,
you know that you only need to make changes on the files inside
state directory.

Cons

1. View and state are separated. If your app has hundreds of features,
finding state corresponding to a particular view is cumbersome.

2. No proper location for feature related, logic code. Anything that
doesn't fit in the current structure will need to be placed in the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

└── src

 ├── api

 │ ├── apiHandler.js

 │ ├── articleApi.js

 │ ├── categoryApi.js

 │ └── userApi.js

 ├── common

 │ ├── components

 │ │ └── ArticleComponent.jsx

 │ └── containers

 │ └── ArticleContainer.js

 ├── index.js

 ├── pages

 │ ├── CategoryPage

 │ │ ├── CategoryPageContainer.js

 │ │ └── components

 │ │ └── CategoryPageComponent.jsx

 │ └── HomePage

 │ ├── components

 │ │ ├── ArticleListComponent.jsx

 │ │ ├── CategoryComponent.jsx

 │ │ └── HomePageComponent.jsx

 │ └── HomePageContainer.js

 ├── routes.js

 ├── state

 │ ├── article

 │ │ ├── articleActions.js

 │ │ └── articleReducer.js

 │ ├── category

 │ │ ├── categoryActions.js

 │ │ └── categoryReducer.js

 │ ├── middleware.js

 │ ├── store.js

 │ └── user

 │ ├── userActions.js

 │ └── userReducer.js

 └── utils

 └── authUtils.js

bash

121

We use cookies to make interactions with our websites and services easy and
meaningful. For more information about the cookies we use or to find out how you
can disable cookies, click here.

Disable cookies Accept cookies and close this message

https://www.pluralsight.com/privacy

1/12/2021 How to Organize Your React + Redux Codebase | Pluralsight

https://www.pluralsight.com/guides/how-to-organize-your-react-+-redux-codebase 6/8

The Application Feature Split

121

Introduction
The Flat Structure
The View-State Split
The Application Feature Split
Conclusion
Top

utils directory, which again separates the portion of feature code
from feature component code.

3. Developer onboarding is not trivial.

While this structure has a few issues, it can be accommodated for the

majority of project use cases. But if the project has a lot of moving

parts and the development team is large, the above issues start to

become blocking points—especially if the project is being developed

by a distributed team (open source projects are prime examples).

Then we need a better organization that allows developers to work on

individual application features without disrupting the entire codebase.

The Application Feature Split

I was first introduced to the application feature-based split through

Node Best Practices by Yoni Goldberg. It is aimed at providing

structure for nodejs projects, which are equally unopinionated. It

provides a scalable model to overcome the common issues in using

MVC pattern on node backends. In brief, it advises splitting directories

by application features rather than code functions. For example, in our

app, we have the following three features:

1. Article
2. Category
3. User

These are also known as domains. By splitting them as such, we could

group all functional code related to an application feature inside a

directory so that a developer can concentrate only on the particular

directory. Let's explore how we could fit the pattern to our app:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

├── api

│ ├── apiHandler.js

│ ├── articleApi.js

│ ├── categoryApi.js

│ └── userApi.js

├── article

│ ├── Article.jsx

│ ├── ArticleList.jsx

│ └── state

│ ├── articleActions.js

│ └── articleReducer.js

├── category

│ ├── Category.js

│ └── state

│ ├── categoryActions.js

│ └── categoryReducer.js

├── category-page

│ └── CategoryPage.jsx

├── common

│ └── state

│ ├── commonActions.js

│ └── commonReducers.js

├── home-page

│ ├── HomePageContainer.js

│ └── HomePage.jsx

├── index.js

├── middleware.js

bash

121

We use cookies to make interactions with our websites and services easy and
meaningful. For more information about the cookies we use or to find out how you
can disable cookies, click here.

Disable cookies Accept cookies and close this message

https://github.com/goldbergyoni/nodebestpractices#1-project-structure-practices
https://github.com/i0natan
https://www.pluralsight.com/privacy

1/12/2021 How to Organize Your React + Redux Codebase | Pluralsight

https://www.pluralsight.com/guides/how-to-organize-your-react-+-redux-codebase 7/8

The Application Feature Split

121

Introduction
The Flat Structure
The View-State Split
The Application Feature Split
Conclusion
Top

In the above structure, the following changes are made:

1. Each application feature is kept in a separate directory
2. All views, logic, and state of a particular feature are grouped inside

the corresponding directory (API can also be brought inside)
3. Containers and components are not split into two but rather

aggregated. It was observed that splitting view and logic does not
create a significant benefit unless the view is being reused by other
logics. So Article.js is a combination of ArticleContainer and
ArticleComponent .

Pros

1. Application features are separated.
2. The codebase has better scalability, maintainability, and readability.
3. Developers intuitively know from where to import feature specific

functions. If you need to access article related actions, they are
inside the article directory.

Cons

1. It's not very transparent on when and when not to separate a set of
codes as an application feature. For example, comments can be
part of the article feature since comments would only appear in
articles. But comments could also be taken out as a separate
directory.

2. Developer onboardinng is harder compared to the above other
structures.

Even with the issues outlined above, this structure seems to be the

most functional out of the options we discussed in the guide. After

refactoring more than a few codebases using each of these options, I

have fixed on it for any project with significant complexity. In a

production-grade application, many smaller application features are

required, including notifications, error feedback, centralized loading,

auth handling, etc., and with a feature-based structure, adding and

removing them is easy.

28

29

30

31

32

33

34

├── routes.js

├── store.js

└── user

 ├── authUtils.js

 └── state

 ├── userActions.js

 └── userReducer.js

Conclusion

Structuring your React + Redux codebase at the beginning is a

confusing task for most frontend developers. Since the framework

itself does not provide strict guidelines, we are forced to use trial-and-

error based methods to find the best-suited structure for the project.

In this guide, we explored a few common methods of organization,

analyzing the pros and cons of each. While one structure does not fit

all different project requirements, we can reference the above

121

We use cookies to make interactions with our websites and services easy and
meaningful. For more information about the cookies we use or to find out how you
can disable cookies, click here.

Disable cookies Accept cookies and close this message

https://www.pluralsight.com/privacy

1/12/2021 How to Organize Your React + Redux Codebase | Pluralsight

https://www.pluralsight.com/guides/how-to-organize-your-react-+-redux-codebase 8/8

The Application Feature Split

121

Introduction
The Flat Structure
The View-State Split
The Application Feature Split
Conclusion
Top

structures as starting points. This greatly minimizes refactoring effort

in the future.121

LEARN MORE

SOLUTIONS

Pluralsight Skills (/product/skills)

Pluralsight Flow (/product/flow)

Government (/industries/government)

Gift of Pluralsight (/gift-of-pluralsight)

View Pricing (/pricing)

Contact Sales (/product/contact-sales)

Skill up for free (/product/skills/free)

PLATFORM

Browse library (/browse)

Role IQ (/product/role-iq)

Skill IQ (/product/skill-iq)

Iris (/product/iris)

We use cookies to make interactions with our websites and services easy and
meaningful. For more information about the cookies we use or to find out how you
can disable cookies, click here.

Disable cookies Accept cookies and close this message

https://www.pluralsight.com/product/paths
https://www.pluralsight.com/product/skills
https://www.pluralsight.com/product/flow
https://www.pluralsight.com/industries/government
https://www.pluralsight.com/gift-of-pluralsight
https://www.pluralsight.com/pricing
https://www.pluralsight.com/product/contact-sales
https://www.pluralsight.com/product/skills/free
https://www.pluralsight.com/browse
https://www.pluralsight.com/product/role-iq
https://www.pluralsight.com/product/skill-iq
https://www.pluralsight.com/product/iris
https://www.pluralsight.com/privacy

