Lecture 15

Set-associative cache
Cache performance

Adapted from Computer Organization and Design, 4t edition, Patterson and Hennessy

The Memory Hierarchy: Terminology

* Block (or line): the minimum unit of information that is
present (or not) in a cache

* Hit Rate: the fraction of memory accesses found in a level

of the memory hierarchy

— Hit Time: Time to access that level which consists of

Time to access the block + Time to determine hit/miss

* Miss Rate: the fraction of memory accesses not found in

a level of the memory hierarchy = 1 - (Hit Rate)

— Miss Penalty: Time to replace a block in that level with the
corresponding block from a lower level which consists of

Time to access the block in the lower level + Time to transmit that
block to the level that experienced the miss + Time to insert the block
in that level + Time to pass the block to the requestor

Hit Time << Miss Penalty

Handling Cache Misses (Single Word

Blocks)

e Read misses (IS and DS)

stall the pipeline, fetch the block from the next level in the
memory hierarchy, install it in the cache and send the requested
word to the processor, then let the pipeline resume

e Write misses (DS only)

1.

or

or

stall the pipeline, fetch the block from next level in the memory
hierarchy, install it in the cache (which may involve having to
evict a dirty block if using a write-back cache), write the word
from the processor to the cache, then let the pipeline resume

Write allocate — just write the word into the cache updating both
the tag and data, no need to check for cache hit, no need to stall

No-write allocate — skip the cache write (but must invalidate that
cache block since it will now hold stale data) and just write the
word to the write buffer (and eventually to the next memory
level), no need to stall if the write buffer isn’t full

Multiword Block Considerations

e Read misses (IS and DS)
— Processed the same as for single word blocks —a miss
returns the entire block from memory

— Miss penalty grows as block size grows

e Early restart — processor resumes execution as soon as the
requested word of the block is returned

* Requested word first — requested word is transferred from the
memory to the cache (and processor) first
— Nonblocking cache — allows the processor to continue to
access the cache while the cache is handling an earlier

miss
e Write misses (DS)
— If using write allocate must first fetch the block from
memory and then write the word to the block (or could
end up with a “garbled” block in the cache (e.g., for 4

word blocks, a new tag, one word of data from the new
block, and three words of data from the old block)

Handling Cache Hits

e Read hits (IS and DS)

— this is what we want!

e Write hits (DS only)
— require the cache and memory to be consistent

e always write the data into both the cache block and the next level in
the memory hierarchy (write-through)

e writes run at the speed of the next level in the memory hierarchy —
so slow! —or can use a write buffer and stall only if the write buffer
is full

— allow cache and memory to be inconsistent

e write the data only into the cache block (write-back the cache block
to the next level in the memory hierarchy when that cache block is
“evicted”)

* need a dirty bit for each data cache block to tell if it needs to be
written back to memory when it is evicted — can use a write buffer
to help “buffer” write-backs of dirty blocks

Reducing Cache Miss Rates #1

1. Allow more flexible block placement

In a direct mapped cache a memory block maps to
exactly one cache block

At the other extreme, could allow a memory block to
be mapped to any cache block — fully associative
cache

A compromise is to divide the cache into sets each of
which consists of n “ways” (n-way set associative). A
memory block maps to a unique set (specified by the
index field) and can be placed in any way of that set
(so there are n choices)

(block address) modulo (# sets in the cache)

Another Reference String Mapping

e Consider the main memory word reference string

Start withanempty cache-allblocks (O 4 O 4 0 4 0 4
initially marked as not valid

0 miss 4 mMiss 0 miss 4 mMiss
0l 0P

00 | Mem(0) 08 Mem((})\4 [Mem(4‘)\0 08 [Mem(O)\ 4

00 0 miss 01 4 miss 00 0 miss 01 4 miss

L Mem(@) 08 Mem(O\ 01 Mem(d) 06 Mem(O)

e 8 requests, 8 misses

2 Ping pong effect due to conflict misses - two memory locations
that map into the same cache block

Set Associative Cache Example

Cache

Way Set V Tag Data

Q1:Is it there?

Compare all the cache
tags in the set to the high
order 3 memory address
bits to tell if the memory
block is in the cache

000

OXX

000

1xx

001

OXX

2221001

1xx

IRR 010

OXX

010

1xx

OXX

011
011

1Ixx

100

OXX

100

1xx

21101

OXX

101

1Ixx

110

OXX

110

1xx

111

OXX

111

1Ixx

Main Memory

One word blocks

Two low order bits
define the byte in the
word (32b words)

Q2: How do we find it?

Use next 1 low order
memory address bit to
determine which cache
set (i.e., modulo the
number of sets in the
cache)

Another Reference String Mapping

e Consider the main memory word reference string

Start withanempty cache-allblocks (O 4 O 4 0 4 0 4
initially marked as not valid

0 miss 4 Mmiss 0 hit 4 hit
000 | Mem(0) 000 | Mem(0) 000 | Mem(0) 000 | Mem(0)
010 | Mem(4) 010 | Mem(4) 010 | Mem(4)

e 8 requests, 2 misses

2 Solves the ping pong effect in a direct mapped cache due to
conflict misses since now two memory locations that map into
the same cache set can co-exist!

Four-Way Set Associative Cache

o 28=256 sets each with four ways (each with one block)

3130 ... 131211 ... 210 V4 Byte offset
I
Tag +22 s
Index
Ihdex V Tag Data V Tag Data V Tag Data V Tag Data
0 0
1 \‘A_/a'y.n 1 \Afoar 1 \Afoa 2 1 A3
2 U 2 [y L 2 ¢ y L) ¢ y J
253 253 253 253
254 254 254 254
255 255 255 255
>) >) >) > _
| ' |
|

. 4x1 select

Y

Hit Data

Range of Set Associative Caches

e For afixed size cache, each increase by a factor of two
in associativity doubles the number of blocks per set
(i.e., the number or ways) and halves the number of
sets — decreases the size of the index by 1 bit and
increases the size of the tag by 1 bit

Used for tag compare Selects the set Selects the word in the block
| | |
Tag Index Block offset |Byte pffset

— > Increasing associativity
Decreasing associativity

=| Fully associative
Direct mapped },7 | (only one set)
(only one way) Tag is all the bits except
Smaller tags, only a block and byte offset

single comparator

Costs of Set Associative Caches

e When a miss occurs, which way’s block do we pick
for replacement?
— Least Recently Used (LRU): the block replaced is the one
that has been unused for the longest time

 Must have hardware to keep track of when each way’s block
was used relative to the other blocks in the set

e For 2-way set associative, takes one bit per set - set the bit
when a block is referenced (and reset the other way’s bit)

 N-way set associative cache costs
— N comparators (delay and area)
— MUX delay (set selection) before data is available

— Data available after set selection (and Hit/Miss
decision). In a direct mapped cache, the cache block is
available before the Hit/Miss decision

e So its not possible to just assume a hit and continue and
recover later if it was a miss

Benefits of Set Associative Caches

 The choice of direct mapped or set associative depends on
the cost of a miss versus the cost of implementation

12
4KB
10 - 8KB
-+ 16KB
% 8 - - 32KB
a — 128KB
S 4. % = : 256K B
' —+ |-+-512KB
2 _
. *— —— —o * Data from Hennessy &

Patterson, Computer
1-way 2-way 4-way 8-way Architecture, 2003

Associativity

2 Largest gains are in going from direct mapped to 2-way
(20%+ reduction in miss rate)

Sources of Cache Misses

 Compulsory (cold start or process migration, first
reference):

— First access to a block, “cold” fact of life, not a whole lot
you can do about it. If you are going to run “millions” of
instruction, compulsory misses are insignificant

— Solution: increase block size (increases miss penalty; very
large blocks could increase miss rate)

e (Capacity:
— Cache cannot contain all blocks accessed by the program
— Solution: increase cache size (may increase access time)
* Conflict (collision):

— Multiple memory locations mapped to the same cache
location

— Solution 1: increase cache size

— Solution 2: increase associativity (stay tuned) (may
increase access time)

10%
9%
8%

% Two-way

6%

Miss rate 59%
per type

Four-way

4% -
3% -
2% _
Capacity
1% -

OOA) T T T T T T T 1
4 8 16 32 64 128 256 512 1024

Cache size (KB)

FIGURE 5.31 The miss rate can be broken into three sources of misses. This graph shows the total miss rate and its components for
a range of cache sizes. This data is for the SPEC2000 integer and floating-point benchmarks and is from the same source as the data
in Figure 5.30. The compulsory miss component is 0.006% and cannot be seen in this graph. The next component is the capacity
miss rate, which depends on cache size. The conflict portion, which depends both on associativity and on cache size, is shown for a
range of associativities from one-way to eight-way. In each case, the labeled section corresponds to the increase in the miss rate
that occurs when the associativity is changed from the next higher degree to the labeled degree of associativity. For example, the
section labeled two-way indicates the additional misses arising when the cache has associativity of two rather than four. Thus, the
difference in the miss rate incurred by a direct-mapped cache versus a fully associative cache of the same size is given by the sum of
the sections

marked eight-way, four-way, two-way, and one-way. The difference between eight-way and four-way is so small that it is diffi cult to
see on this graph. Copyright © 2009 Elsevier, Inc. All rights reserved.

Chapter 5 — Large and Fast:
Exploiting Memory Hierarchy
— 15

Measuring Cache Performance

e Assuming cache hit costs are included as part of the
normal CPU execution cycle, then

CPU time = IC X CPI X CC
= IC X (CPl.4., + Memory-stall cycles) x CC

N— g
'

CPIs‘caII

2 Memory-stall cycles come from cache misses (a sum of read-
stalls and write-stalls)

Read-stall cycles = reads/program X read miss rate X
read miss penalty

Write-stall cycles = (writes/program X write miss rate
X write miss penalty)

+ write buffer stalls

2 For write-through caches, we can simplify this to

Memory-stall cycles = accesses/program X miss rate X miss penalty

Impacts of Cache Performance

Relative cache penalty increases as processor performance
improves (faster clock rate and/or lower CPI)

— The memory speed is unlikely to improve as fast as processor
cycle time. When calculating CPl,, the cache miss penalty is
measured in processor clock cycles needed to handle a miss

— The lower the CPI...,, the more pronounced the impact of stalls

A processor with a CPI.,., of 2, a 100 cycle miss penalty,
36% load/store instr’s, and 2% IS and 4% DS miss rates

Memory-stall cycles = 2% % 100 + 36% % 4% x 100 = 3.44
So CPI = 2+3.44=5.44

more than twice the CPI,,_, !
What if the CPI. ., is reduced to 1? 0.5? 0.25?
What if the DS miss rate went up 1%? 2%?

What if the processor clock rate is doubled (doubling the
miss penalty)?

stalls

Average Memory Access Time (AMAT)

 Alarger cache will have a longer access time. An
increase in hit time will likely add another stage to the
pipeline. At some point the increase in hit time for a
larger cache will overcome the improvement in hit rate
leading to a decrease in performance.

e Average Memory Access Time (AMAT) is the average
to access memory considering both hits and misses

AMAT = Time for a hit + Miss rate x Miss penalty

 What is the AMAT for a processor with a 20 psec clock,
a miss penalty of 50 clock cycles, a miss rate of 0.02
misses per instruction and a cache access time of 1
clock cycle?

Reducing Cache Miss Rates #2

2. Use multiple levels of caches

 With advancing technology have more than enough
room on the die for bigger L1 caches or for a second
level of caches — normally a unified L2 cache (i.e., it
holds both instructions and data) and in some cases
even a unified L3 cache

* For our example, CPI.,.., of 2, 100 cycle miss penalty
(to main memory) and a 25 cycle miss penalty (to
UL2S), 36% load/stores, a 2% (4%) L1 1S (DS) miss
rate, add a 0.5% UL2S miss rate

= 2 + .02%25 + .36%.04%25 + .005%x100 +
.36%.005%100 = 3.54
(as compared to 5.44 with no L2S)

CPI

stalls

Multilevel Cache Design Considerations

e Design considerations for L1 and L2 caches are very
different

— Primary cache should focus on minimizing hit time in
support of a shorter clock cycle

e Smaller with smaller block sizes

— Secondary cache(s) should focus on reducing miss rate to
reduce the penalty of long main memory access times
e Larger with larger block sizes
e Higher levels of associativity

 The miss penalty of the L1 cache is significantly
reduced by the presence of an L2 cache —so it can be
smaller (i.e., faster) but have a higher miss rate

e Forthe L2 cache, hit time is less important than miss
rate

— The L2S hit time determines L1S’s miss penalty
— L2S local miss rate >> than the global miss rate

