Lecture 14

Direct-mapped cache

Adapted from Computer Organization and Design, 4t edition, Patterson and Hennessy

A Typical Memory Hierarchy

0 Take advantage of the principle of locality to present the user
with as much memory as is available in the cheapest
technology at the speed offered by the fastest technology

On_Chip Components lllllllllllllllllllll E . . -t -
Control .-
Rt Secondary
_| - g ' Main Memory
Datapath | Z — Memory (Disk)
@ (DRAM)
%‘ e
Speed (%cycles): %'s 1’s 10’s 100’s 10,000’s
Size (bytes): 100’s 10K’s M’s G’s T’s

Cost: highest lowest

Characteristics of the Memory Hierarchy

Increasing
distance
from the
processor in
access time

Processor

I 4-8 bytes (word)

L1S

?
v 8-32 bytes (block)

L2S

*
v 1 to 4 blocks
Main Memory

t

‘ 1,024+ bytes (disk sector = p3

Secondary Memory

»
»

A

(Relative) size of the memory at each level

Inclusive—
what is in L1S
is a subset of
what is in L2S
is a subset of
what is in MM
that is a subset
of is in SM

ge)

Cache Basics

 Two questions to answer (in hardware):

— Q1: How do we know if a data item is in the cache?
— Q2: Ifitis, how do we find it?

e Direct mapped

— Each memory block is mapped to exactly one block in
the cache

* |ots of lower level blocks must share blocks in the cache

— Address mapping (to answer Q2):
(block address) modulo (# of blocks in the cache)

— Have a tag associated with each cache block that
contains the address information (the upper portion of
the address) required to identify the block (to answer

Q1)

Index Valid Tag

Caching:

Cache

Data

00

01

10

11

Q1:Is it there?

Compare the cache tag
to the high order 2
memory address bits to
tell if the memory block
is in the cache

0000xx
0001xx
0010xx
1001 1xx
/0100xx
0101xx
~10110xx
S0111xx
1000xx
211001xx
11010xx
1 1011xx
[1100xx

“11101xx
1110xx
1111xx

A Simple First Example

Main Memory

One word blocks

Two low order bits
define the byte in the
word (32b words)

Q2: How do we find it?

Use next 2 low order
memory address bits —
the index — to determine
which cache block (i.e.,
modulo the number of
blocks in the cache)

(block address) modulo (# of blocks in the cache)

Caching: A Simple First Example

— Main Memory
i 0000xx
Cache ~ loooixx Ome word blocks
" [oojoxx ~ Twolow order bits
index Valld Tag Data / ~ lootaxx definethebyteinthe
00 - L oo ord (320 words)
01 S o101
10 s _ [pTox
11 S S |0111xx o
o 1000xx Q2: How do we find it?
~[1001xx
T Holox Use next 2 low order
Q1l: Is it there? 1011xx Memory address bits —
1100xx the index — to determine
Compare the cache tag T 1101xx Which cache block (i.e.,
to the high order 2 T li1doxx Modulo the number of

tell if the memory block
is in the cache
(block address) modulo (# of blocks in the cache)

MIPS Direct Mapped Cache Example

 One word blocks, cache size = 1K words (or 4KB)

Byte
/ offset

Hit Tag Y20 0 Data
1 Index 4

Index Valid Tag Data

3130 ... 1312 11 ... 210

—l ¢ 00T 0 e @]

~

20 ~332

5

What kind of locality are we taking advantage of?

Direct Mapped Cache

e Consider the main memory word reference string

Start with an empty cache - all blocks 012 3 4 3 4 15
initially marked as not valid

0 1 2

15

Direct Mapped Cache

e Consider the main memory word reference string

Start with an empty cache - all blocks O 1 2 3 4 3 4 15
initially marked as not valid

0 miss 1 miss 2 miss 3 miss

00 |Mem(0) 00 Mem(0) 00 |Mem(0) 00 |Mem(0)

00 [Mem(1) 00 |Mem(1) 00 |Mem(1)

00 | Mem(2) 00 [Mem(2)

00 | Mem(3)

4 miss 3 hit 4 hit 15 miss

01 4

“0a. | Mem (03~ 01 |Mem(4) 01 |Mem(4) 01 |Mem(4)

00 |Mem(1) 00 |Mem(1) 00 |Mem(1) 00 |Mem(1)

00 [Mem(2) 00 [Mem(2) 00 [Mem(2) 00 [Mem(2)
00 [Mem(3) 00 [Mem(3) 00 [Mem(3) | 17080 [Mem(3).. s

e 8 requests, 6 misses

Multiword Block Direct Mapped Cache

 Four words/block, cache size = 1K words

Byte Dat
" offset ata

Hit 3130 ... 131211 ... 43210

Tag ~20 ~3 Block offset

Index

Data

v

Index Valid Tag <
0
1
2

253
254
255

T20

-

\ 4 \ 4 \ 4 \ 4
Ej)
N

| ~N

32

What kind of locality are we taking advantage of?

Taking Advantage of Spatial Locality

e Let cache block hold more than one word

Start with an empty cache - all blocks O 1 2 3 4 3 4 15
initially marked as not valid

0 1 2

Taking Advantage of Spatial Locality

e Let cache block hold more than one word

Start with an empty cache - all blocks

initially marked as not valid

012343415

0 miss 1 hit 2 miss
00 Mem(1l) Mem(0) 00 Mem(1) Mem(0) 00 |Mem(1) Mem(0)
00 |Mem(3) Mem(2)
3 hit 01 4 miss 3 hit
00 |Mem(1) Mem(0) DS\|Memm3 Viem(0 o o1 |Mem(5) Vem(4)
00 |Mem(3) Mem(2) 00 |Mem(3) Mem(2) 00 |Mem(3) Mem(2)
4 hit 15 miss
01 |Mem(5) Mem(4) 1p01 |Mem(5)1:\/lem(4) n
00 |Mem(3) Mem(2) DS\|Mem\('S\)\“VIem(2

e 8 requests, 4 misses

Miss Rate vs Block Size vs Cache Size

10 !
N 8 KB
S 16 KB
(¢D)
2 64 KB
o —256 KB
@
S

0 ~— —h— — . ﬁ+

16 32 64 128 256

Block size (bytes)

0 Miss rate goes up if the block size becomes a significant fraction
of the cache size because the number of blocks that can be held
in the same size cache is smaller (increasing capacity misses)

Processor

< >

Cache

Bus

Memory

a. One-word-wide
memory organization

Processor

>

~_—TMultiplexot

Cache |

Bus

s et

Memory

b. Wider memory organization

Processor

>

Cache
T Eeg
Bus
.
Memory || Memory || Memory || Memory
bank 0 bank 1 bank 2 bank 3

c. Interleaved memory organization

Handling Cache Misses (Single Word Blocks)

 Read misses (IS and DS)

stall the pipeline, fetch the block from the next level in the
memory hierarchy, install it in the cache and send the requested
word to the processor, then let the pipeline resume

* Write misses (DS only)

1.

or

or

stall the pipeline, fetch the block from next level in the memory
hierarchy, install it in the cache (which may involve having to
evict a dirty block if using a write-back cache), write the word
from the processor to the cache, then let the pipeline resume

Write allocate — just write the word into the cache updating both
the tag and data, no need to check for cache hit, no need to stall

No-write allocate — skip the cache write (but must invalidate that
cache block since it will now hold stale data) and just write the
word to the write buffer (and eventually to the next memory
level), no need to stall if the write buffer isn’t full

Multiword Block Considerations

e Read misses (IS and DS)
— Processed the same as for single word blocks —a miss
returns the entire block from memory

— Miss penalty grows as block size grows

* Early restart — processor resumes execution as soon as the
requested word of the block is returned

e Requested word first — requested word is transferred from the
memory to the cache (and processor) first
— Nonblocking cache — allows the processor to continue to
access the cache while the cache is handling an earlier

miss
e Write misses (DS)
— If using write allocate must first fetch the block from
memory and then write the word to the block (or could
end up with a “garbled” block in the cache (e.g., for 4
word blocks, a new tag, one word of data from the new
block, and three words of data from the old block)

